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Abstract

Growth rates of water droplets were measured with a static diffusion cloud condensa-
tion chamber in May–June 2007 at a rural field site in Southern Ontario, Canada, 70 km
north of Toronto. Observations were made during periods when the winds were from
the south and the site was impacted by anthropogenic air from the US and Southern5

Ontario as well as during a 5-day period of northerly wind flow when the aerosol was
dominated by biogenic sources. The growth of droplets on anthropogenic size-selected
particles centred at 0.1µm diameter and composed of approximately 40% organic and
60% ammonium sulphate (AS) by mass, was delayed on the order of 1 second com-
pared to a pure AS aerosol. Simulations of the growth rate indicate that a lowering of10

the water mass accommodation coefficient from αc=1 to an average of αc=0.044 is
needed (assuming an insoluble organic with hygroscopicity parameter, κorg, of zero).
In contrast, the growth rate of the aerosol of biogenic character, consisting of >80% or-
ganic, was similar to that of pure AS. Simulations of the predominantly biogenic aerosol
show agreement between the observations and simulations when κorg=0.05–0.2 and15

αc=1. Inhibition of water uptake by the anthropogenic organic applied to an adiabatic
cloud parcel model in the form of a constant low αc increases the number of droplets
in a cloud compared to pure AS. If the αc is assumed to increase with increasing liquid
water on the droplets, then the number of droplets decreases which could diminish the
indirect effect. The slightly lower κorg in the biogenic case decreases the number of20

droplets in a cloud compared to pure AS.

1 Introduction

Aerosol particles affect the atmospheric radiation budget directly by scattering or ab-
sorbing radiation and indirectly by acting as cloud condensation nuclei (CCN). If the
amount of cloud liquid water does not change with changes in CCN, then an increase25

in the number of droplets leads to a decrease in the size of the droplets with increas-
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ing CCN, thus influencing the radiative properties and lifetimes of clouds. The extent
of the cloud indirect effect of aerosol particles is highly uncertain (IPCC, 2007), and
part of this uncertainty is understanding how the organic components contribute to the
formation of cloud droplets. Carbonaceous material represents a significant fraction
of atmospheric fine particle composition (Zhang et al., 2007). Mixtures of organic and5

inorganic components are complex and water uptake is difficult to characterize. The lit-
erature contains many examples of laboratory studies of the CCN behaviour of organic
aerosol particles (e.g. Abbatt et al., 2005; Cruz and Pandis, 1997; Shantz et al., 2003;
Shulman et al., 1996) but currently, the focus is moving away from studying organics
alone in the laboratory and moving towards studying the CCN character of ambient10

aerosols from different sources (i.e. mixtures that may contain organics) (e.g. Chang et
al., 2007; Ruehl et al., 2008; Shantz et al., 2008; Stroud et al., 2007).

Two significant sources of organic aerosols are the oxidation products of biogenic
emissions (e.g. monoterpenes) and anthropogenic emissions (primary as well as oxi-
dation products of anthropogenic volatile organic compounds, or VOCs). Organic bio-15

genic aerosols have been found to be reasonably CCN active in smog chamber stud-
ies (e.g. Duplissy et al., 2008; Hartz et al., 2005; Prenni et al., 2007; VanReken et al.,
2005). Duplissy et al. (2008) found the aerosol formed from α-pinene oxidation became
more CCN active over time when exposed to sunlight. VanReken et al. (2005) found
the CCN activity to decrease as more oxidation products condensed on the aerosol in20

a dark experiment. Field observations of biogenic aerosols suggest that this organic
contributes to the CCN activity (Leaitch et al., 1999; Shantz et al., 2008). In contrast,
several field studies focussed on anthropogenic emissions suggest that CCN closure is
easily achieved if an insoluble organic is assumed, showing that the sulphate present
in the aerosol dominated the CCN activity (Broekhuizen et al., 2006; Medina et al.,25

2007; Stroud et al., 2007). A number of studies suggest that the contribution of the or-
ganic components to the CCN activity increases when more of the organic component
is assumed to be soluble (e.g. Chang et al., 2007; Ming and Russell, 2004).

The recent introduction of a single hygroscopicity parameter, κ, reduces the large
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number of physical and chemical parameters needed to describe the water uptake by
growing droplets to one value (Petters and Kreidenweis, 2007). For aerosols consisting
of multiple components, the value of κtot is given by a simple mixing rule: κtot=

∑
εiκi ,

where εi is the volume fraction and i is the index representing the individual species
(Petters and Kreidenweis, 2007). This parameter has been determined for organic5

particles resulting from the oxidation of biogenic VOCs in smog chamber studies as
0.1 (Duplissy et al., 2008; Prenni et al., 2007) and 0.15 (Engelhart et al., 2008) and
0.02–0.05 in a biogenic field study (Shantz et al., 2008).

Chuang et al. (1997) showed that neglecting kinetic limitations on the water uptake
of cloud droplets can lead to overestimations in cloud radiative forcing calculations and10

thus kinetics should be considered. The water vapour mass accommodation coeffi-
cient, αc, can have a strong effect on the condensation rate of water and remains an
outstanding uncertainty in quantifying the indirect effect of aerosols on climate forcing.
Literature values of αc span 2 orders of magnitude, from 0.01 to 1 (e.g. Davidovits et
al., 2004; Laaksonen et al., 2005; Marek and Straub, 2001; Mozurkewich, 1986, and15

the references therein) and have been estimated to be as low as 10−5 for organic films
on cloud droplet surfaces (Chuang, 2003). Ruehl et al. (2008) found that approximately
60% of the ambient CCN of urban, polluted regional and continental origins grew into
cloud droplets at a similar rate as ammonium sulphate (AS). They observed a number
of cases that had a lower αc compared to AS at various sites.20

In this paper, observations from a field study at Egbert, Ontario, Canada during the
late spring of 2007 are used to contrast the CCN cloud droplet water uptake by aerosol
particles containing organics from anthropogenic vs. biogenic sources. The CCN water
uptake growth kinetics were studied using a cloud droplet growth model that utilizes κ
to determine the hygroscopicity of the organic aerosol (Shantz et al., 2008). The rate25

of growth of aerosol particles containing anthropogenic organic components is found
to be reduced.
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2 Experiment

The Egbert 2007 field campaign took place May-June 2007 at a rural field site in South-
ern Ontario, Canada, 70 km north of Toronto (44.23 N, 79.78 W, see Fig. 1). Previous
studies of the atmospheric aerosol at this site are discussed by Chang et al. (2007)
and Rupakheti et al. (2005).5

2.1 Instrumentation

Much of the instrumentation used during the Egbert 2007 field campaign is described
by Slowik et al. (2009), Vlasenko et al. (2009) and Chan et al. (2009). The focus of
this work is on data from a static thermal diffusion chamber (University of Wyoming
Model 100 CCN counter) used to study the initial growth rates of cloud droplets at a10

constant supersaturation (Shantz et al., 2003, 2008). The experimentally determined
supersaturation used in this work is S=0.35±0.05%, found using nearly monodisperse
ammonium sulphate particles as discussed in Shantz et al. (2003, 2008). The poly-
disperse ambient aerosol was sampled directly into the CCN counter and a TSI 3022
Condensation Particle Counter (CPC) through a 3/8′′OD stainless steel tube approx-15

imately 3 m in length with an intake point approximately 1 m above the roof of the
building. In order to reduce the effect of dry particle size on the droplet growth rates,
ambient aerosol particles were also size-selected with a TSI 3081 Long Differential Mo-
bility Analyzer (DMA) during periods with measurable particle number concentrations.
After size selection, the nearly monodisperse particle flow was split for measurement20

using the CPC and the CCN counter. Measured ambient growth rates from the CCN
counter were compared to those of pure ammonium sulphate (AS) calibration aerosol
at similar size and number concentration as the measured ambient aerosol. The AS
calibration aerosol was nebulized and then size-selected with the DMA.

Ambient aerosol particle size distributions between 0.01µm and 0.4µm geometric25

diameter were determined with a Scanning Mobility Particle Sizer (SMPS) comprised
of a TSI 3071 DMA and a TSI 3010 CPC (TSI Inc., St. Paul, MN, USA).
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An Aerodyne time-of-flight (C-ToF) Aerosol Mass Spectrometer (AMS) (Aerodyne
Research, Inc., Billerica, MA, USA) provides size-resolved, non-refractory chemi-
cal composition of submicron aerosol particles measured in the range of approxi-
mately 0.07–0.7µm vacuum aerodynamic diameter (Dva), where for spherical parti-
cles Dva=ρpDgeo, where ρp is the particle density and Dgeo is the geometric diameter.5

Detailed descriptions of the AMS design, operation, quantification methods and cal-
ibration procedures are given elsewhere (Canagaratna et al., 2007; Drewnick et al.,
2005; Jayne et al., 2000; Jimenez et al., 2003; Liu et al., 2007). The mass concentra-
tions have been corrected for an average collection efficiency of 0.6 determined for this
study (Slowik et al., 2009).10

3 Results and discussion

3.1 Time series overview

Figure 2 shows a time series of wind speed and direction (Fig. 2a, dates/times are
in local time, LT, Eastern Daylight Savings Time, EDT) and mass concentrations from
the AMS (Fig. 2b) (Slowik et al., 2009). Air reaching the site from the south is typ-15

ically influenced by anthropogenic sources from the US and the highly populated
Southern Ontario region (e.g. 7 June in Fig. 1a). During times of southerly winds
(Fig. 2a, red shades), high mass concentrations of organic and sulphate were mea-
sured (e.g. 31 May–3 June and 7–9 June inclusive).

When winds were from the north (Fig. 2a, blue shades), the aerosol mass concen-20

trations were usually lower (Fig. 2b). An exception to this was near the end of the
study, 9–13 June, when north winds persisted (with few anthropogenic sources) and
air reaching the site has travelled over a large fetch of mixed forests (e.g. 13 June in
Fig. 1b). Figure 2b shows the organic mass concentration increased steadily over this
time period. The gas-phase and aerosol signatures as well as regional modelling in-25

dicates that the origin of most of the organic aerosol during this period was from the
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oxidation of biogenic precursors (Slowik et al., 2009).

3.2 CCN growth kinetics of monodisperse aerosol

Examples of droplet growth curves of size-selected ambient particles compared to AS
particles at S=0.35% are shown in Figs. 3a and 4a. The CCN counter detector voltage
(Fig. 3a) is proportional to the cross section of the growing cloud droplets. The data of5

Fig. 3 were collected during a period when the winds were from the southwest (Fig. 1a)
and the aerosol had crossed over populated Southern Ontario and the Ohio valley.
The AS calibration aerosol begins to accumulate water at approximately 2 s and grows
through 8 s. After 8 s, the water droplets begin to fall from the detection region and the
signal decreases. The initial growth of the ambient anthropogenic aerosol is delayed10

relative to the AS particles.
A droplet growth model that mimics the chamber supersaturation (Shantz et al.,

2003, 2008) was used to investigate possible explanations for the delayed growth of
the ambient aerosol. The model is initiated with nearly monodisperse particles with
approximately 87% of the particles centred at 0.1µm and 13% of the particles centred15

at 0.14µm (the doubly charged particle mode that exit the DMA). Figure 3b shows the
model results limited to 5 s as well as the observed growth rates for the AS and ambient
aerosols from Fig. 3a. Only the first 5 s are shown as the model does not include the
droplet gravitational settling at larger droplet sizes. The left and right axes are scaled
according to the AS calibration results (Shantz et al., 2008). We assume that the wa-20

ter mass accommodation coefficient, αc, for the AS case is unity. Figure 3c shows
the AMS time-of-flight chemical composition measurements. All conversions from Dva
to Dgeo were performed assuming spherical particles and using the following material

densities: ρAS=1.77 g cm−3 and ρorg=1.3 g cm−3. The mass fractions of the ambient
particles were estimated from the data shown in Fig. 3c to be 62% for AS and 38% for25

the organic component at Dva=0.13–0.19µm (corresponding to Dgeo=0.08–0.12µm
with midpoint Dgeo=0.1µm). Initially, we assumed the surface tension of water, a mass
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accommodation coefficient of αc=1 (Davidovits et al., 2004; Laaksonen et al., 2005;
Mozurkewich, 1986), a κAS of 0.61 (Petters and Kreidenweis, 2007) and a κorg of 0
(i.e. the organic was assumed to not contribute to the initial water uptake). Although
there was a slight delay in the ambient simulations compared to the AS simulations, it is
not nearly as significant as the observed delay, suggesting that the organic compounds5

present in the ambient aerosol inhibited water uptake by these CCN.
There are 2 adjustable parameters for matching the simulations to the observed

growth curves, κorg and αc. Since κorg=0 is already overestimating the observed delay,
increasing κorg will not help achieve agreement between the observations and simula-
tions. Instead, lower values of αc (0.04–0.06) produce delays closer to that observed.10

This result may be consistent with Stroud et al. (2007) who found that αc=0.07 was
needed to achieve closure in a case study of a pollution episode. If αc increases with
the accumulation of water on the particles, then it may explain the rise in the ambi-
ent growth curve after 4 s. The effect of an increasing αc with water uptake will be
discussed further in Sect. 3.4.15

This analysis was performed for the 6 anthropogenic monodisperse cases observed
on 3 different days during the field campaign and the results are summarized in Table 1.
The delays in the initial growth rates of the CCN droplets were estimated by comparing
the ambient growth rate with the corresponding AS calibration growth rate at the same
size and number concentration. The αc ranges from 0.02 to 0.06 and the mean αc is20

0.044.
The size-selected aerosol sampled during the biogenic period is shown in Fig. 4a.

Figure 4b shows this period was dominated by an organic aerosol. Growth of the
0.12µm biogenic aerosol is not delayed relative to the AS aerosol even though the
majority of the aerosol is organic (Fig. 4b). Although our previous field studies have25

indicated a CCN-active biogenic aerosol (Leaitch et al., 1999; Shantz et al., 2008),
the comparable CCN activity between the organic-dominated aerosol and the pure AS
aerosol observed at Egbert was unexpected.

For simulations of the ambient aerosols, we applied an approximate chemical com-
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position of 12% AS (κAS=0.61) and 88% organic mass fractions (varying κorg) based
on the AMS mass distribution (Fig. 4b) and assumed that αc=1. For the κorg=0 case,
there is more delay simulated (not shown) than was observed, suggesting that the or-
ganic component has an elevated value of κorg and is contributing to the water uptake.
The aerosol numbers are extremely low in this case and the estimation of κorg from the5

comparison of the simulations and observations can only be constrained within a range
of 0.05–0.2. This of course is based on an αc of 1, but it is possible that the value of
κorg is higher than 0.2, in which case αc must be significantly lower than 1.

The AMS data suggest that the anthropogenic aerosol was more oxygenated than
the biogenic aerosol (Slowik et al., 2009); the latter aerosol perhaps consisted of fresh,10

small and soluble organic compounds that activate readily. The fact that the more
oxygenated anthropogenic aerosol exhibits characteristics that suggest it slows down
the rate of water uptake and that the less oxygenated biogenic aerosol takes up water
readily is counter to the more common concepts of organic CCN activation (Kanakidou
et al., 2005). We suggest that the more oxygenated anthropogenic organic compo-15

nents may have a higher average molecular weight and be less soluble, and that the
water uptake suppression may be due to organic films arising from the HOA coating the
aerosol; however, we are comparing organic compounds from different sources and the
individual types of organics measured in both of these cases are unknown. Ruehl et
al. (2008) observed at least 1 day of moderate to strong condensational droplet growth20

inhibition relative to AS at each of the urban, polluted regional and continental sites,
consistent with the present observations.

3.3 CCN growth kinetics of polydisperse aerosol

We compare the anthropogenic and biogenic CCN abilities further using polydisperse
data from different days at S=0.35%. Because we could not produce an AS calibration25

with the exact polydisperse ambient aerosol size distribution, we rely on the model
described in Sect. 3.2 to study the effects of chemical composition on water uptake.

Figure 5a shows the droplet growth rates of the anthropogenic aerosol observed
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from the CCN counter for 1 June. The error bars show the uncertainties that arise
from errors in the calibrated supersaturation. The model size distribution assumption
(based on the SMPS) was set up as shown in Fig. 5b. From the chemical mass dis-
tribution from the AMS (Fig. 5b), the growth rates were modelled assuming modes 1
and 2 consist of 50% AS and 50% organic and mode 3 consists of 60% AS and 40%5

organic (mass fractions) assuming κorg=0. The best match with the observations is for
the assumption of αc=0.07 and αc can be constrained within the supersaturation un-
certainty to αc=0.05–0.15, which are at the upper end of the result for the size-selected
anthropogenic aerosol (Sect. 3.2).

Following the same procedure for a biogenic case (Fig. 6, with chemical composition10

assumptions that all 3 modes are 20% AS and 80% organic), we find that κorg=0.2
(0.05 in the first few seconds of growth) and αc=1 gives the best agreement between
the model and the observed growth curves. The range κorg=0.05-0.36 demonstrates
the values within the supersaturation uncertainty. The biogenic organic must be con-
tributing to the water uptake in this case as the levels of sulphate are low. These poly-15

disperse experiments verify the findings from Sect. 3.2, which had higher uncertainties
in the monodisperse biogenic case due to the much lower number concentrations.

3.4 Adiabatic cloud parcel model simulations

The results from the previous sections were used in an adiabatic cloud parcel model
(Shantz et al., 2003) to consider the impact of the initial water uptake delay on the num-20

ber concentrations of cloud droplets. Table 2 shows the number of activated droplets
(Nd ) above the maximum supersaturation in a cloud for updraft velocities of 20 cm s−1

and 100 cm s−1 and for aerosol number and chemical size distributions represented
by the anthropogenic and biogenic observations. All size distributions are scaled to
1500 cm−3 total number concentration for simpler comparison.25

The biogenic simulation included κorg=0.2 and αc=1 (Sect. 3.3) as well as a base
case of pure AS. These assumptions lead to a lowering of the Nd to 0.80–0.89 of the
Nd obtained for pure AS due to a lower κorg (0.2) than κAS (0.61).
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The anthropogenic simulation included κorg=0 and αc=0.044 (the average value
found in Sect. 3.2) as well as a varying αc that increased with increasing liquid wa-
ter content (LWC) in each particle size bin. The base cases were run with the same
chemical size distributions but with αc=1 and then for pure AS and αc=1. The delay
observed for the anthropogenic cases modelled with αc of 0.044 leads to an Nd that5

is 1.13–1.53 times higher than the case with the same chemical compositions but with
αc=1 (Table 2). This lower αc also results in an Nd that is identical (for the 20 cm s−1

simulation) and 1.22 times higher (for the 100 cm s−1 simulation) compared to that for
pure AS (αc=1). If we assume αc increases with the accumulation of water on the
particles, the Nd decreases compared to the constant αc simulations in the 100 cm s−1

10

simulation. In this case, the larger particles activate readily, increasing their αc and
depleting the excess water vapour so that the smaller sizes, for which the αc remains
lower, are unable to activate. Thus, depending on if and how αc changes during the
condensation process, the anthropogenic organic components may either enhance or
diminish the indirect effect. Overall, these simulations suggest that the delay in the15

anthropogenic aerosol water uptake and the biogenic aerosol’s lower κorg compared
to κAS may lead to slightly lower Nd than pure AS. The exception to this is if the αc
remains low throughout the droplet growth process; a possibility that seems unlikely.

A second effect that shows up in the modelling is of some significance to the in-
direct effect. Hypothetically, if the updraft velocity is the same but one case has a20

reduced growth rate compared to the other that leads to reduced Nd , then the adia-
batic cloud LWC has to be reduced. Even if the Nd increase, persistently low growth
rates (i.e. αc=0.044) reduce the LWC in the case of the higher updraft speed (Ta-
ble 2). At the lower updraft speed, the reduction in LWC for the variable αc is about
0.03%, whereas the reduction for the higher updraft is about 0.4% compared to pure25

AS. This indicates that at least at cloud base and for higher updraft speeds, there can
be insufficient time for the droplets to reach equilibrium when organic components from
anthropogenic sources are present in the aerosol.

With a persistent smaller αc, the Nd are higher because the cloud base supersatu-
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ration is increased. However, the effect of the higher Nd may be offset by a reduction
in LWC. In the more likely situation where the αc starts relatively low and increases
as the droplets increase in size, the effects of anthropogenic organics on the growth
rates is to reduce both the cloud Nd and LWC. This result should not suggest that
anthropogenic organics in general overall reduce the indirect effect of aerosol parti-5

cles because the organic aerosol also influences the number concentrations of CCN
and may enhance the indirect effect through that process (Leaitch et al., 2009). It is
important to understand all of the ways that the organic aerosol can influence clouds.

4 Conclusions

For a study with both air of biogenic and anthropogenic influence, kinetics of the ini-10

tial growth of cloud droplets in a CCN counter were measured and simulated. The
organic components in the anthropogenic aerosol delayed the initial growth of these
particles into cloud droplets when compared with a pure ammonium sulphate (AS)
aerosol (S=0.35%, 0.1µm particles). The best agreement between the observations
and simulations was found for κorg=0 and an average mass accommodation coefficient15

of αc=0.044. A different effect was observed for fresher biogenic particles, where the
organic-dominated particles exhibited similar initial growth rates as pure AS particles.
The best agreement between the observations and simulations in these cases was
found for κorg=0.05–0.2 and αc=1. Higher values of κorg are possible but that requires
decreased αc in order to match the modelled and observed growth rates. The delay20

in the initial growth of the cloud droplets on anthropogenic aerosols suggest organic
inhibition, possibly due to the formation of an organic film that coated the aerosol. Even
though the biogenic aerosol appears to be fresher, it takes up water readily perhaps be-
cause the fresh secondary organic compounds from the oxidation of forest emissions
are soluble. Ruehl et al. (2008) observed droplet growth inhibition (normalized to lab-25

generated AS) for aerosols in urban, polluted and continental air masses, consistent
with the findings from our study.
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Applying these findings in an adiabatic cloud parcel model, we find that the delay in
the anthropogenic aerosol water uptake could increase (constant low αc) or decrease
(increasing αc with increasing liquid water on the droplets) the Nd compared to either
an aerosol with the same chemical composition and αc=1 or a pure AS aerosol also
with αc=1. If αc starts at a lower value and increases as more water accumulates on5

the droplet, the model results show a lower Nd and LWC, which slightly reduces the
indirect effect. The biogenic aerosol’s κorg also appears to lead to slightly lower Nd
compared with the pure AS simulation.
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Table 1. Observations from the size-selected nearly monodisperse ambient aerosol of stronger
anthropogenic influence. Simulations were used to determine αc for the anthropogenic cases
compared to AS calibration simulations (assuming αc of unity). The organics in the simulations
are assumed to have κorg of zero.

Date
(dd mmm)

Time Dgeo
(µm)

Number
conc.
(cm−3)

Organic mass
fraction at
Dgeo

Inorganic mass
fraction at
Da

geo

Approx.
delay time
(sec)

αc estimated
range

αc midpoint
of estimated
range

27 May 13:33–14:05 0.12 95–105 0.53 0.47 1 0.03–0.05 0.04
7 Jun 16:37–16:42 0.10 285–295 0.40 0.60 1 0.04–0.07 0.055
7 Jun 16:44–16:58 0.10 265-275 0.40 0.60 1.25 0.03–0.05 0.04
7 Jun 17:01–18:00 0.10 215–225 0.38 0.62 1 0.04–0.06 0.05
7 Jun 18:00–18:17 0.10 205–215 0.39 0.61 0.75 0.05–0.07 0.06
8 Jun 11:26–11:46 0.10 65–75 0.48 0.52 1 0.01–0.03 0.02

Average αc 0.044
Standard deviation of αc 0.014

a Inorganic is assumed to be ammonium sulphate with κAS of 0.61.
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Table 2. Simulations from the adiabatic cloud parcel model for anthropogenic and biogenic
case studies. The total mass fractions, hygroscopicity parameters (κ) and mass accommoda-
tion coefficients (αc) are unitless. The number of droplets (Nd ) found in these simulated clouds
is determined well above the maximum supersaturation (60 m above cloud base) for 2 updraft
velocities (u), 20 and 100 cm s−1. “Anth” is anthropogenic aerosol, “Biog” is biogenic aerosol
and “AS” indicates a simulation that modelled the ambient size distribution from the date indi-
cated but with the composition as pure ammonium sulphate. All simulations are scaled to the
same total number concentration of 1500 cm−3. Also, only particles >0.05µm are simulated
here.

Total Mass Fraction u=20
cm s−1

u=100
cm s−1

u=20
cm s−1

u=100
cm s−1

Date
(dd mmm)

Case Org. Inorg.a κorg κAS αc LWC
(g m−3)

LWC
(g m−3)

Nd

(cm−3)
Nd

(cm−3)

7 Jun Anth 0.37 0.63 0 0.61 0.044 0.12816 0.13513 269 936
7 Jun Anth 0.37 0.63 0 0.61 Vary 0.01

to 1b
0.13068 0.13535 238 565

7 Jun Anth 0.37 0.63 0 0.61 1 0.13082 0.13535 238 612
7 Jun AS 0 1 N/A 0.61 1 0.13115 0.13539 269 768
11 Jun Biog 0.78 0.22 0.2 0.61 1 0.13135 0.13544 292 885
11 Jun AS 0 1 N/A 0.61 1 0.13148 0.13992 364 995

a Inorganic is assumed to be ammonium sulphate.
b αc is assumed to increase as the amount of liquid water on the droplets increase.

13793

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/13775/2009/acpd-9-13775-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/13775/2009/acpd-9-13775-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 13775–13799, 2009

Anthropogenic and
biogenic CCN growth

kinetics

N. C. Shantz et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

 1

 

                   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Back trajectory analyses from the NOAA Air Resources Laboratory HYSPLIT 

program for (a) an anthropogenically influenced period (7 June) and (b) a biogenically 

influenced period (13 June).  Egbert, Ontario is the trajectory end point.   

(a) (b) 

 Egbert 
                 Toronto 

  Egbert 
                   Toronto 

Fig. 1. Back trajectory analyses from the NOAA Air Resources Laboratory HYSPLIT program
for (a) an anthropogenically influenced period (7 June) and (b) a biogenically influenced period
(13 June). Egbert, Ontario is the trajectory end point.
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Figure 2.  Time Series from Egbert 2007 of (a) wind speed, colour-coded to wind direction 

(reds=south winds, blues = north winds) and (b) organic, sulphate and nitrate data from the C-

ToF AMS.  Indicated in black lines are the case study periods discussed in this paper.  

Dates/times are in EDT, local time (LT). 

(a) 

(b) 

Anthropogenic               Anthropogenic                      Anthropogenic         Biogenic         Biogenic 
Monodisperse                  Polydisperse                 Monodisperse        Polydisperse    Monodisperse 

Fig. 2. Time Series from Egbert 2007 of (a) wind speed, colour-coded to wind direction
(reds=south winds, blues=north winds) and (b) organic, sulphate and nitrate data from the
C-ToF AMS. Indicated in black lines are the case study periods discussed in this paper.
Dates/times are in EDT, local time (LT).
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Figure 3.  7 June 2007, 17:00-18:00 LT anthropogenic case with south winds (a) observations of CCN 

counter droplet growth rates (shown as a voltage) size-selected to 0.1 μm at S=0.35% and number 

concentrations of 215-225 cm-3.  The x-axis is the sample time as the particles activate and grow into 

cloud droplets.  (b) The observed growth rates from the CCN counter from (a) correspond to the left y-

axis.  The right y-axis show the droplet cross-sectional area calculated in the simulations.  The 

simulations assume 62% AS (κAS=0.61) and 38% organic mass fractions (κorg=0) for a nearly 

monodisperse aerosol centred around 0.1 μm.  This figure is constrained to 5 seconds because the 

model does not simulate the droplet gravitational settling.  (c) Mass distributions from the AMS 

particle time-of-flight measurements (right y-axis) and number size distributions (left y-axis)from the 

SMPS.  The x-axis shows the geometric diameter (converted from Dva assuming a particle density 

ρ=1.63 g cm-3, calculated as described in Sect. 3.2). 
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Fig. 3. 7 June 2007, 17:00–18:00 LT anthropogenic case with south winds. (a) Observations of CCN counter droplet
growth rates (shown as a voltage) size-selected to 0.1µm at S=0.35% and number concentrations of 215–225 cm−3.
The x-axis is the sample time as the particles activate and grow into cloud droplets. (b) The observed growth rates
from the CCN counter from (a) correspond to the left y-axis. The right y-axis show the droplet cross-sectional area
calculated in the simulations. The simulations assume 62% AS (κAS=0.61) and 38% organic mass fractions (κorg=0)
for a nearly monodisperse aerosol centred around 0.1µm. This figure is constrained to 5 s because the model does
not simulate the droplet gravitational settling. (c) Mass distributions from the AMS particle time-of-flight measurements
(right y-axis) and number size distributions (left y-axis) from the SMPS. The x-axis shows the geometric diameter
(converted from Dva assuming a particle density of 1.63 g cm−3, calculated as described in Sect. 3.2).
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Figure 4.  13 June 2007, 11:45-12:30 LT biogenic case with north winds (a) observations of 

CCN counter droplet growth rates size-selected to 0.12 μm at S=0.35% and number 

concentrations of 35-45 cm-3.  (b) Mass distributions (11:00-12:00) from the AMS particle 

time-of-flight measurements and number size distributions from the SMPS (11:45-12:30).  

The x-axis shows the geometric diameter (converted from Dva assuming a particle 

density=1.38 g cm-3). 

(b) 

(a) 

Fig. 4. 13 June 2007, 11:45–12:30 LT biogenic case with north winds. (a) Observations of CCN
counter droplet growth rates size-selected to 0.12 µm at S=0.35% and number concentrations
of 35–45 cm−3. (b) Mass distributions (11:00–12:00) from the AMS particle time-of-flight mea-
surements and number size distributions from the SMPS (11:45–12:30). The x-axis shows the
geometric diameter (converted from Dva assuming a particle density of 1.38 g cm−3).
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Figure 5.  1 June 2007, 10:26-11:05 LT anthropogenic case with south winds.  (a) Observations of 

CCN counter droplet growth rates for polydisperse ambient aerosol measured at S=0.35%.  The red 

solid line is the observed growth rate from the CCN counter (left y-axis) and all other curves are 

modelled growth rates shown as cross-sectional area (right y-axis).  The error bars demonstrate 

simulations performed at S=±0.05% to reflect the error in the calculated supersaturation.  (b) Observed 

(black) and modelled (pink) number size distribution (left y-axis) and observed mass distributions 

from the AMS particle time-of-flight measurements (right y-axis).  The Dva have been converted to 

geometric diameter assuming a particle density= 1.54 g cm-3. 

(b) 

(a) 

Mode 1 

Mode 2

Mode 3

Fig. 5. 1 June 2007, 10:26–11:05 LT anthropogenic case with south winds. (a) Observations of CCN counter droplet
growth rates for polydisperse ambient aerosol measured at S=0.35%. The red solid line is the observed growth rate
from the CCN counter (left y-axis) and all other curves are modelled growth rates shown as cross-sectional area (right
y-axis). The error bars demonstrate simulations performed at S=±0.05% to reflect the error in the calculated supersat-
uration. (b) Observed (black) and modelled (pink) number size distribution (left y-axis) and observed mass distributions
from the AMS particle time-of-flight measurements (right y-axis). The Dva have been converted to geometric diameter
assuming a particle density of 1.54 g cm−3.
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Figure 6.  11 June 2007, 14:45-15:35 LT biogenic case with north winds.  (a) Observations of CCN 

counter droplet growth rates for polydisperse ambient aerosol measured at S=0.35%.  The green solid 

line is the observed growth rate from the CCN counter (left y-axis) and all other curves are modelled 

growth rates shown as cross-sectional area (right y-axis).  (b) Observed (black) and modelled (pink) 

number size distribution (left y-axis) and mass distributions  from the AMS particle time-of-flight 

measurements (right y-axis).  The Dva have been converted to geometric diameter assuming a particle 

density= 1.4 g cm-3. 

(a) 

(b) 

Mode 1 Mode 2

Mode 3

Fig. 6. 11 June 2007, 14:45–15:35 LT biogenic case with north winds. (a) Observations of
CCN counter droplet growth rates for polydisperse ambient aerosol measured at S=0.35%.
The green solid line is the observed growth rate from the CCN counter (left y-axis) and all other
curves are modelled growth rates shown as cross-sectional area (right y-axis). (b) Observed
(black) and modelled (pink) number size distribution (left y-axis) and mass distributions from
the AMS particle time-of-flight measurements (right y-axis). The Dva have been converted to
geometric diameter assuming a particle density of 1.4 g cm−3.
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